
In 2011 the following question was asked in [G]:

This constant is denoted by T(n). Its determination and general behavior is 
currently unknown. This open problem is an example of a zero-sum problem 
in combinatorial number theory.

In 1988, Daniel Kleitman (MIT) and Mark Lemke (Minnesota) introduced the  
invariant known as the index [KL]. If S is a zero-sum sequence in Zn, then 
elements of S sum to some multiple of n.  The index of S is defined as the 
smallest integer multiple of n that S can be made to sum to after 
transformation by group automorphism (such transformed sequences are 
called equivalent). In Zn a group automorphism is equivalent to multiplication 
by an integer relatively prime to n.   

Most research on index centers around finding conditions which ensure that 
a sequence will contain a zero-sum subsequence with index 1.

Our data suggest that the value of T(n) is likely to remain relatively close to the value of Ol(Zn) as n 
increases, however the value of T(n) appears to behave more sporadically than that of Ol(Zn). This supports 
the idea that sequences of index higher than 1 are relatively sparse in sequences which contain multiple 
zero-sums. It suggests that once a sequence is long enough to ensure zero-sum sequences, sequences 
without a subsequence of index 1 are relatively rare.  

Further, it appears that the prime factors of n influence the value of T(n). When n is sufficiently large, we 
see general increases in the value of T(n) when n has a high number of prime factors (i.e. n=24, n=32) and 
decreases in the value of T(n) when n is prime (n=31, 37). This is likely related to the relative size of the 
automorphism group of Zn, which is largest when n is prime. 

We can obtain upper and lower bounds for T(n) with some observations.  

Proof: We partition the integers of Zn into ௡
ଶ

sets of elements each with sum 

equal to n in the obvious way: (1,n-1), (2,n-2),….(௡
ଶ

). If a sequence in Zn has more 

than ௡
ଶ

elements, then by the pigeonhole principle it must contain at least two 
elements from one of these sets, and hence a zero-subsequence of index 1.   

Proof: By the minimality of the Olson constant, we know that there exists a 
sequence of length Ol(Zn)-1 which has no zero-sum subsequence, hence no 
subsequence of index 1. 

Our object of study is a sequence of integers in Zn (the group of integers 
modulo n), where the order of the sequence is disregarded. If a sequence of 
(not necessarily distinct) integers sums to 0 (mod n), then the sequence is called 
a zero-sum sequence. 

Zero-sum problems study conditions which ensure that a given sequence will 
have a zero-sum subsequence with additional prescribed properties. More 
generally, one considers sequences of elements from an arbitrary finite abelian 
group. For example, the determination of the Davenport constant has become 
one of the most important unsolved problems in group theory since first being 
posed by Baayen, Erdos and Davenport in 1967.

If we disallow the repetition of elements in the sequence, the study of 
sequences in Zn is equivalent to the study of the subsets of Zn . In this case, the 
Olson Constant is the analog of the Davenport Constant.
Definition

Determining the value of Ol(G) is currently an open problem, and the subject 
of much research. Precise values are known only for very special examples of G. 

1. Determine the value of T(n) for all n less than 100 and compare with the known values of the Ol(Zn). This 
would likely require high powered computing and more advanced results on the index of sequences. 

2. Improve the bounds on the value of T(n). For example,  find a constant c<ଵ
ଶ

so that for sufficiently large 
n, T(n) <cn or (analogous to Olson constant) a constant d so that T(n) < d 𝑛  .

3. Derive a function which expresses/bounds T(n) in terms of Ol(Zn).
4. Allow for repetition in the sequence. In other words, let t(n) be the smallest integer k such that every 

sequence of length k contains a subsequence a zero-sum subsequence of index 1, and find t(n).
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Figure 1. Values of T(n) along with the bounds derived above.  

Index of a Sequence

Bounds on T(n)

STEP 2 - Eliminate as many sequences as possible 
which contain a subsequence of index 1.  

STEP 1 – Utilise a computer program to generate a 
list of all sequences. 

STEP 3 - Check remaining sequences by hand to 
see if they have subsequences of index 1. 

We determined the minimal length k so that every sequence in Zn of length 
k contains a subsequence of index 1 for all n<42. These values are shown 
below and represent the highest known calculated values of the constant T(n). 

n T(n) Counterexample
2 2 (1)
3 2 (1)
4 3 (1,2)
5 3 (1,2)
6 4 (1,3,4)
7 4 (1,2,3)
8 5 (1,4,5,6)
9 5 (2,3,5,8)

10 5 (1,5,6,8)
11 6 (1,3,4,5,9)
12 6 (1,2,6,7,8)
13 6 (1,2,6,8,9)
14 7 (1,2,6,7,9,10)
15 6 (1,2,3,4,5)
16 7 (1,8,9,12,13,14)
17 7 (1,2,5,6,7,13)
18 8 (1,2,9,10,11,12,13)
19 7 (1,2,3,9,11,12)
20 8 (1,2,3,9,11,12)
21 8 (1,2,7,8,9,15,16)
22 8 (1,2,3,10,13,14,15)
23 8 (1,2,14,16,17,18,19)
24 10 (1,4,5,9,12,13,16,17,21)
25 8 (1,2,5,6,7,8,21)

If n>16 is even, then  the sequence (1,3,௡
ଶ

, ௡
ଶ

+1, ௡
ଶ

+3,n-6,n-2) 
has no zero-subsequence of index 1. 

The list of all values of T(n) with our counterexample sequences are given.   
When viewed in conjunction with our predetermined upper and lower 
bounds, we can observe that the value of T(n) appears to remain closer to 
the value of Ol(Zn) than our upper bound. 

In order to demonstrate that T(n)=k we had to demonstrate the 
following:

o Every sequence in Zn of length k contains a subsequence of index 1;
o There exists at least one sequence in Zn of length k-1 with no 

subsequence of index 1. 

We call the latter sequences “counterexamples” and they represent the 
maximal length sequences of index 2 or higher for each n, and are of 
potential interest. The counterexamples can be used to search for patterns 
to improve bounds, or studied in their own right. For example, we can 
demonstrate the following fact using our counterexample from n=20 to 
show the following: 

To determine T(n) for each Zn we select a length k and search every sequence of length k for a subsequence of index 1. If we are 
able to find a sequence with no subsequence of index 1, we proceed to the next value of k.  Thus, our general procedure is to, for a 
given value of n, to select a length of sequence within our bounds, and then take the following steps:

o Eliminate every sequence with a subsequence that sums to exactly n;
o Eliminate every sequence not containing 1:

• If n is prime, every sequence is equivalent to a sequence containing 1; 
• If n is composite, handle the scenario where no element in the 

sequence is coprime to n, then suppose that our sequence contains a 1. 

o Use some basic ideas and known results to identify 
sequences of index 1.

• Any zero-sum sequence of length 3 must have 
index 1.

• If n is prime, then any zero-sequence of length 4 
has index 1 [L].

o Sage Math Cloud (https://cloud.sagemath.com).
o Determines the number of sequences needed and generates a list of all 

such sequences.

Acknowledgements

Let n=7, so that Z7= {0,1,2,3,4,5,6}. Then the sequence
S=(2,3,4,5)  

is a zero-sum sequence since 2+3+4+5 = 0 (mod 7).

For any group G, the smallest integer value k such that 
every sequence of k elements from G has a zero-sum 
subsequence is called the Davenport Constant of G.

For any group G, the smallest integer value k such 
that every sequence of k distinct elements from G has 
a zero-sum subsequence is called the Olson Constant 
of G (denoted Ol(G)).

Example

Definition

Definition

Let S=(a1,…, al) be a zero-sum sequence in Zn. The 
index of S is the minimal possible integer k such that

ma1 (mod n)+ …+ mal (mod n) = kn,
where m is any integer relatively prime to n. 

Definition

In Z8, the sequence  S=(4,5,7) has index 1, since it is equivalent 
to the sequence 5S = (4,1,3), which has sum 8. The sequence 
T=(1,4,5,6), has index 2, since each of the equivalent sequences 

3T = (3,4,7,5)   5T=(5,4,1,6)   and   7T=(7,4,3,2)
have sum 16. 

Example

Upper Bound

Lower Bound
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T(n) < ௡

ଶ
+ 1 for every value of n. 
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What is the smallest integer value k such that every 
sequence of k elements from Zn contains a zero-sum 
subsequence with index 1? 
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n T(n) Counterexample
26 9 (1,2,3,13,14,15,16,17)
27 9 (1,2,9,10,11,12,19,20)
28 10 (1,2,7,8,9,14,15,22,23)
29 9 (1,3,4,13,14,17,19,20)
30 10 (1,2,3,4,15,16,17,18,19)
31 9 (1,3,4,9,12,13,25,29)
32 11 (1,2,8,9,10,16,17,18,25,26)
33 10 (1,2,3,11,12,14,23,24,25)

n T(n) Counterexample
34 11 (1,2,3,4,17,18,19,20,21, 22)
35 11 (1,5,6,10,11,15,16,21,26,31)
36 11 (1,2,3,4,18,19,20,21,22,24)
37 9 (1,2,3,4,5,6,7,8)
38 11 (1, 2, 3, 4, 19, 20, 21, 22, 23, 24)
39 12 (1,2,3,13,14,15,16,27,28,29,30)
40 13 (1, 5, 6, 11, 16, 20, 21, 25, 26, 30, 31, 36)
41 10 (1, 2, 3, 13, 14, 15, 16, 29, 30)

Note that the number of sequences increase 
rapidly as n increases; for example, there are 
over 125,000 sequences of length 8 in Z20 and 
over 12 billion sequences of length 13 in Z40.

T(n) > Ol(Zn), for every value of n. 


